skip to main content


Search for: All records

Creators/Authors contains: "Cooper, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring(Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with twopCO2levels (600 and 2000μatm) to investigate effects on metabolism and survival. We further tested how elevatedpCO2affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found thatpCO2had limited effects onCTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures andpCO2levels. However, heart contraction measurements made 48 hours afterCTmaxexposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant ofpCO2but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.

     
    more » « less
    Free, publicly-accessible full text available December 18, 2024
  2. Abstract

    More than 36 yr have passed since the discovery of the infrared excess from circumstellar dust orbiting the white dwarf G29-38, which at 17.5 pc it is the nearest and brightest of its class. The precise morphology of the orbiting dust remains only marginally constrained by existing data, subject to model-dependent inferences, and thus fundamental questions of its dynamical origin and evolution persist. This study presents a means to constrain the geometric distribution of the emitting dust using stellar pulsations measured at optical wavelengths as a variable illumination source of the dust, which reradiates primarily in the infrared. By combining optical photometry from the Whole Earth Telescope with 0.7–2.5μm spectroscopy obtained with SpeX at NASA’s Infrared Telescope Facility, we detect luminosity variations at all observed wavelengths, with variations at most wavelengths corresponding to the behavior of the pulsating stellar photosphere, but toward the longest wavelengths the light curves probe the corresponding time variability of the circumstellar dust. In addition to developing methodology, we find the pulsation amplitudes decrease with increasing wavelength for principal pulsation modes, yet increase beyond ≈2μm for nonlinear combination frequencies. We interpret these results as combination modes derived from the principal modes of identicalvalues and discuss the implications for the morphology of the warm dust. We also draw attention to some discrepancies between our findings and theoretical expectations for the results of the nonlinearity imposed by the surface convection zone on mode–mode interactions and on the behavior of the first harmonic of the highest-amplitude pulsation mode.

     
    more » « less
  3. Synopsis

    By linking anatomical structure to mechanical performance we can improve our understanding of how selection shapes morphology. Here we examined the functional morphology of feeding in fishes of the subfamily Danioninae (order Cypriniformes) to determine aspects of cranial evolution connected with their trophic diversification. The Danioninae comprise three major lineages and each employs a different feeding strategy. We gathered data on skull form and function from species in each clade, then assessed their evolutionary dynamics using phylogenetic-comparative methods. Differences between clades are strongly associated with differences in jaw protrusion. The paedomorphic Danionella clade does not use jaw protrusion at all, members of the Danio clade use jaw protrusion for suction production and prey capture, and members of the sister clade to Danio (e.g., Devario and Microdevario) use jaw protrusion to retain prey after capture. The shape of the premaxillary bone is a major determinant of protrusion ability, and premaxilla morphology in each of these lineages is consistent with their protrusion strategies. Premaxilla shapes have evolved rapidly, which indicates that they have been subjected to strong selection. We compared premaxilla development in giant danio (Devario aequipinnatus) and zebrafish (Danio rerio) and discuss a developmental mechanism that could shift danionine fishes between the feeding strategies employed by these species and their respective clades. We also identified a highly integrated evolutionary module that has been an important factor in the evolution of trophic mechanics within the Danioninae.

     
    more » « less
  4. Abstract

    Projections of global sea level depend sensitively on whether Thwaites Glacier, Antarctica, will continue to lose ice rapidly. Prior studies have focused primarily on understanding the evolution of ice velocity and whether the reverse‐sloping bed at Thwaites Glacier could drive irreversible retreat. However, the overall ice flux to the ocean and the possibility of irreversible retreat depend not only on the ice speed but also on the width of the main ice trunk. Here, we complement prior work by focusing specifically on understanding whether the lateral boundaries of the main ice trunk, termed shear margins, might migrate over time. We hypothesize that the shear margins at Thwaites Glacier will migrate on a decadal timescale in response to continued ice thinning and surface steepening. We test this hypothesis by developing a depth‐averaged, thermomechanical free‐boundary model that captures the complex topography underneath the glacier and solves for both the ice velocity and for the position of the shear margins. We find that both shear margins are prone to migration in response to ice thinning with basal strength and surface slope steepening determining their relative motion. We construct four end‐member cases of basal strength that represent different physical properties governing friction at the glacier bed and present two cases of ice thinning to contrast the effects of surface steepening and ice thinning. We test our model by hindcasting historic data and discuss how data from ongoing field campaigns could further be used to test our model.

     
    more » « less
  5. Aguirre, Windsor E. (Ed.)
    The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory. Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes. 
    more » « less
  6. ABSTRACT

    The growing number of multi-epoch optical and infrared sky surveys are uncovering unprecedented numbers of new variable stars, of an increasing number of types. The short interval between observations in adjacent near-infrared filters in the UKIDSS Galactic Plane Survey (UGPS) allows for the discovery of variability on the time-scale of minutes. We report on the nature of one such object, through the use of optical spectroscopy, time series photometry, and targeted X-ray observations. We propose that UGPS J194310.32+183851.8 is a magnetic cataclysmic variable star of novel character, probably featuring a longer than average spin period and an orbital period likely to be shorter than the period gap (i.e. Porb < 2 h). We reason that the star is likely a member of the short-period intermediate-polar subclass that exists below this period boundary, but with the additional feature that system’s spectral energy distribution is fainter and redder than other members of the group.

     
    more » « less
  7. Abstract

    How species interact with human‐disturbed environments is a central focus of conservation biology. Within disturbed landscapes, regenerating forests have potential to provide habitat for forest species, especially as increasing amounts of primary forest are lost. As secondary forest regenerates beside primary forest, it increases habitat heterogeneity. However, relatively little is known about the influence of habitat heterogeneity on space use. In this study, we analyzed the topography and vertical vegetation structure of regenerating forest, small forest fragments, and undisturbed rainforest in the central Amazon to determine (1) how these structural characteristics influence understory mixed‐species flock space use and (2) how the vegetative preferences of flocks varied across a disturbance gradient. We first used behavioral observations to quantify the vertical foraging niche of flocks and then associated variation in horizontal space use with the three‐dimensional features of forest structure. Surprisingly, we found that flock space use was not consistently associated with any variable, even though available habitat differed both within and across forest types. Overall, the best predictors were elevation and leaf area density within the subcanopy (16–25 m), yet most flock foraging occurred in the midstory (6–15 m). Together, these results indicate that while flocks may have certain habitat preferences, these preferences are flexible or idiosyncratic and do not correspond to a specific vertical profile. For example, flocks spent a disproportionate amount of time in low elevations when available, but not all flocks had access to low‐lying areas within their home ranges. Although other studies show flock size and diversity can be highly sensitive to habitat disturbance, mixed‐species flocks demonstrate remarkable plasticity as a unit, virtually saturating undisturbed and disturbed forest at our site, as long as regeneration has passed a certain threshold.

     
    more » « less
  8. Human activity around the globe is a growing source of selection pressure on animal behavior and communication systems. Some animals can modify their vocalizations to avoid masking from anthropogenic noise. However, such modifications can also affect the salience of these vocalizations in functional contexts such as competition and mate choice. Such is the case in the well-studied Nuttall's white-crowned sparrow ( Zonotrichia leucophrys nuttalli ), which lives year-round in both urban San Francisco and nearby rural Point Reyes. A performance feature of this species' song is salient in territorial defense, such that higher performance songs elicit stronger responses in simulated territorial intrusions; but songs with lower performance values transmit better in anthropogenic noise. A key question then is whether vocal performance signals male quality and ability to obtain high quality territories in urban populations. We predicted white-crowned sparrows with higher vocal performance will be in better condition and will tend to hold territories with lower noise levels and more species-preferred landscape features. Because white-crowned sparrows are adapted to coastal scrub habitats, we expect high quality territories to contain lower and less dense canopies, less drought, more greenness, and more flat open ground for foraging. To test our predictions, we recorded songs and measured vocal performance and body condition (scaled mass index and fat score) for a set of urban and rural birds ( N = 93), as well as ambient noise levels on their territories. Remote sensing metrics measured landscape features of territories, such as drought stress (NDWI), greenness (NDVI), mean canopy height, maximum height, leaf area density (understory and canopy), slope, and percent bare ground for a 50 m radius on each male territory. We did not find a correlation between body condition and performance but did find a relationship between noise levels and performance. Further, high performers held territories with lower canopies and less dense vegetation, which are species-preferred landscape features. These findings link together fundamental aspects of sexual selection in that habitat quality and the quality of sexually selected signals appear to be associated: males that have the highest performing songs are defending territories of the highest quality. 
    more » « less
  9. Abstract Fast ice flow on the Antarctic continent constitutes much of the mass loss from the ice sheet. However, geophysical methods struggle to constrain ice flow history at depth, or separate the signatures of topography, ice dynamics and basal conditions on layer structure. We develop and demonstrate a methodology to compare layer signatures in multiple airborne radar transects in order to characterize ice flow at depth, or improve coverage of existing radar surveys. We apply this technique to generate synthetic, along-flow radargrams and compare different deformation regimes to observed radargram structure. Specifically, we investigate flow around the central sticky spot of Whillans Ice Stream, West Antarctica. Our study suggests that present-day velocity flowlines are insufficient to characterize flow at depth as expressed in layer geometry, and streaklines provide a better characterization of flow around a basal sticky spot. For Whillans Ice Stream, this suggests that ice flow wraps around the central sticky spot, supported by idealized flow simulations. While tracking isochrone translation and rotation across survey lines is complex, we demonstrate that our approach to combine radargram interpretation and modeling can reveal critical details of past ice flow. 
    more » « less
  10. Abstract Here we use polarimetric measurements from an Autonomous phase-sensitive Radio-Echo Sounder (ApRES) to investigate ice fabric within Whillans Ice Stream, West Antarctica. The survey traverse is bounded at one end by the suture zone with the Mercer Ice Stream and at the other end by a basal ‘sticky spot’. Our data analysis employs a phase-based polarimetric coherence method to estimate horizontal ice fabric properties: the fabric orientation and the magnitude of the horizontal fabric asymmetry. We infer an azimuthal rotation in the prevailing horizontal c -axis between the near-surface ( z ≈ 10–50 m) and deeper ice ( z ≈ 170–360 m), with the near-surface orientated closer to perpendicular to flow and deeper ice closer to parallel. In the near-surface, the fabric asymmetry increases toward the center of Whillans Ice Stream which is consistent with the surface compression direction. By contrast, the fabric orientation in deeper ice is not aligned with the surface compression direction but is consistent with englacial ice reacting to longitudinal compression associated with basal resistance from the nearby sticky spot. 
    more » « less